특별히 데이터 모델은 데이터베이스를 만들어내는 설계서로서 분명한 목표를 가지고 있다. 현실세계에서 데이터베이스까지 만들어지는 과정은 [그림 Ⅰ-1-3]과 같이 시간에 따라 진행되는 과정으로서 추상화 수준에 따라 개념적 데이터 모델, 논리적 데이터 모델, 물리적 데이터 모델로 정리할 수 있다.
처음 현실세계에서 추상화 수준이 높은 상위 수준을 형상화하기 위해 개념적 데이터 모델링을 전개한다. 개념적 데이터 모델은 추상화 수준이 높고 업무중심적이고 포괄적인 수준의 모델링을 진행한다. 참고로 EA기반의 전사적인 데이터 모델링을 전개할 때는 더 상위수준인 개괄적인 데이터 모델링을 먼저 수행하고 이후에 업무영역에 따른 개념적 데이터 모델링을 전개한다. 엔터티(Entity)중심의 상위 수준의 데이터 모델이 완성되면 업무의 구체적인 모습과 흐름에 따른 구체화된 업무중심의 데이터 모델을 만들어 내는데 이것을 논리적인 데이터 모델링이라고 한다. 논리적인 데이터 모델링 이후 데이터베이스의 저장구조에 따른 테이블스페이스 등을 고려한 방식을 물리적인 데이터 모델링이라고 한다. 이것을 요약하여 정리하면 [표 Ⅰ-1-1]과 같다.
※ 개념데이터 모델링 : 추상화 수준이 높고 업무중심적이고, 포괄적인 수준의 모델링 진행, 전사적 데이터모델링, EA수립시 많이 이용됨
※ 실제 데이터베이스 구축시 참고되는 모델은 물리적 데이터 모델링이다.
※ 개념모델링 -> 논리 모델링 -> 물리 모델링 단계로 갈수록 구체적이다.
※ 데이터 모델링의 3가지 요소는 Thing, Attributes, Relationship 이다.
※ 논리 모델링의 외래키는 물리 모델에서 반드시 구현되지는 않음(선택사항)
가. 개념적 데이터 모델링(Conceptual Data Modeling)
개념적 데이터베이스 설계(개념 데이터 모델링)는 조직, 사용자의 데이터 요구사항을 찾고 분석하는데서 시작한다. 이 과정은 어떠한 자료가 중요하며 또 어떠한 자료가 유지되어야 하는지를 결정하는 것도 포함한다. 이 단계에 있어서의 주요한 활동은 핵심 엔터티와 그들 간의 관계를 발견하고, 그것을 표현하기 위해서 엔터티-관계 다이어그램을 생성하는 것이다. 엔터티-관계 다이어그램은 조직과 다양한 데이터베이스 사용자에게 어떠한 데이터가 중요한지 나타내기 위해서 사용된다. 데이터 모델링 과정이 전 조직에 걸쳐 이루어진다면, 그것은 전사적 데이터 모델(Enterprise Data Model)이라고 불린다. 개념 데이터 모델을 통해 조직의 데이터 요구를 공식화하는 것은 두 가지의 중요한 기능을 지원한다.
첫째, 개념 데이터 모델은 사용자와 시스템 개발자가 데이터 요구 사항을 발견하는 것을 지원한다. 개념 데이터 모델은 추상적이다. 그렇기 때문에 그 모델은 상위의 문제에 대한 구조화를 쉽게 하며, 사용자와 개발자가 시스템 기능에 대해서 논의할 수 있는 기반을 형성한다.
둘째, 개념 데이터 모델은 현 시스템이 어떻게 변형되어야 하는가를 이해하는데 유용하다. 일반적으로 매우 간단하게 고립된(Stand Alone) 시스템도 추상적 모델링을 통해서 보다 쉽게 표현되고 설명된다.
나. 논리적 데이터 모델링(Logical Data Modeling)
논리 데이터 모델링은 데이터베이스 설계 프로세스의 Input으로써 비즈니스 정보의 논리적인 구조와 규칙을 명확하게 표현하는 기법 또는 과정이라 할 수 있다. 논리 데이터 모델링의 결과로 얻어지는 논리 데이터 모델은 데이터 모델링이 최??리적인 스키마 설계를 하기 전에 액세스하고, 누가 데이터에 액세스하며, 그러한 액세스의 전산화와는 독립적으로 다시 말해서 누가(Who), 어떻게(How: Process) 그리고 전산화와는 별개로 비즈니스 데이터에 존재하는 사실들을 인식하여 기록하는 것이다. 데이터 모델링 과정에서 가장 핵심이 되는 부분이 논리 데이터 모델링이라고 할 수 있다. 데이터 모델링이란 모델링 과정이 아닌 별도의 과정을 통해서 조사하고 결정한 사실을 단지 ERD라는 그림으로 그려내는 과정을 말하는 것이 아니다.
시스템 구축을 위해서 가장 먼저 시작할 기초적인 업무조사를 하는 초기단계에서부터 인간이 결정해야 할 대부분의 사항을 모두 정의하는 시스템 설계의 전 과정을 지원하는 ‘과정의 도구’라고 해야 할 것이다. 이 단계에서 수행하는 또 한가지 중요한 활동은 정규화이다.
정규화는 논리 데이터 모델 상세화 과정의 대표적인 활동으로, 논리 데이터 모델의 일관성을 확보하고 중복을 제거하여 속성들이 가장 적절한 엔터티에 배치되도록 함으로써 보다 신뢰성있는 데이터구조를 얻는데 목적이 있다. 논리 데이터 모델의 상세화는 식별자 확정, 정규화, M:M 관계 해소, 참조 무결성 규칙 정의 등을 들 수 있으며, 추가적으로 이력 관리에 대한 전략을 정의하여 이를 논리 데이터 모델에 반영함으로써 데이터 모델링을 완료하게 된다.
데이터 모델링이 최종적으로 완료된 상태라고 정의할수 있는, 즉 물리적인 스키마 설계를 하기 전 단계를 가리키는 말은 ? 논리적 모델링
논리 데이터 모델링의 결과로 얻어지는 논리 데이터 모델은 데이터 모델링이 최종적으로 완료된 상태라고 정의할 수 있다. 즉 물리적인 스키마 설계를 하기 전 단계의 데이터 모델 상태를 일컫는 말이다.
다. 물리적 데이터 모델링(Physical Data Modeling)
데이터베이스 설계 과정의 세 번째 단계인 물리 데이터 모델링은 논리 데이터 모델이 데이터 저장소로서 어떻게 컴퓨터 하드웨어에 표현될 것인가를 다룬다. 데이터가 물리적으로 컴퓨터에 어떻게 저장될 것인가에 대한 정의를 물리적 스키마라고 한다. 이 단계에서 결정되는 것은 테이블, 칼럼 등으로 표현되는 물리적인 저장구조와 사용될 저장 장치, 자료를 추출하기 위해 사용될 접근 방법 등이 있다. 계층적 데이터베이스 관리 시스템 환경에서는 데이터베이스 관리자가 물리적 스키마를 설계하고 구현하기 위해서 보다 많은 시간을 투자하여야 한다.
실질적인 현실 프로젝트에서는 개념적 데이터 모델링 논리적 데이터 모델링 물리적 데이터 모델링으로 수행하는 경우는 드물며 개념적 데이터 모델링과 논리적 데이터 모델을 한꺼번에 수행하여 논리적인 데이터 모델링으로 수행하는 경우가 대부분이다. 프로젝트 생명주기에 따른 일반적인 데이터 모델은 다음과 같이 수행된다.
'데이터 아키텍처 & 처리기술 & DBMS > Data Architecture' 카테고리의 다른 글
6. 데이터 모델링에서 데이터독립성의 이해 (0) | 2020.04.07 |
---|---|
5. 프로젝트 생명주기(Life Cycle)에서 데이터 모델링 (0) | 2020.04.07 |
3. 데이터 모델링의 중요성 및 유의점 (0) | 2020.04.07 |
2. 데이터 모델의 기본 개념의 이해 (0) | 2020.04.07 |
1. 모델링의 이해 (0) | 2020.04.07 |